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Abstract  The detachment of a sutfener trom a plate is described by the fully-plastic crack propa-
gation in the web of a non-symmetric I-beam. The lower flange of the non-symmetric I-beam
represents the effective plate width. which may peel away from the stiffener. By assuming a rigid.
linear strain-hardening material. we distinguish between two responses of the lower flange depending
on the load amplitude : deformation without crack growth and deformation with crack growth. The
bifurcation point that marks the transition from a deformation without crack growth to deformation
with crack growth is independent of the initial crack length. but depends on the relative magnitude
of plastic modulus to the material flow stress, the specific work of fracture. and the relative size of
the tear zone and width of the flange. A parametric study shows that bifurcation load increases
approximately linearly with an increasing ratio of web to flange widths for some chosen material
constants. The effective width of the stiffened plate is thus an important parameter in the detachment
of the plate from the stffener

I. INTRODUCTION

The problem associated with tearing in structures composed of stiffened panels is addressed
in this paper. The detachment of the plate from the stiffener due to crack propagation in
the stiffener web usually takes place at or above the heat-affected zone of the weldment.
Because most structures are designed to operate at loads several times below their limit
load, fracture and crack growth which may be induced by accidental loading occurring in
the presence of large plastic deformation. Conventional techniques from elastic fracture
mechanics cannot be used for solving this type of problem. We can. however. use simple
energy and equilibrium methods to examine the load -deflection and crack growth charac-
teristics of the structure as it undergoes steady-state crack propagation or peeling. This
simple engineering approach for dealing with the steady-state tearing of metals has given
accurate solutions to predict the tearing loads associated with adhesives fracture [see Atkins
and Mai (1985)]. and in recent years has been applied to problems involving cohesive
fractures (Atkins and Liu. 1993 McClintock. 1994). According to Chang er «/. (1972). the
difference between adhesive and cohesive fractures is in the specific work that is required
to create a new adhesive or cohesive surface area as the crack propagates.

Equilibrium of a linear strain-hardening beam and the principle of virtual work are
combined to find the deformation characteristic of the detached panel. The rigid, linear-
strain hardening material assumption is distinguished from the non-hardening model pro-
posed by McClintock (1994) in earlier attempts to understand fully-plastic fracture of
welded T-joints. The strain-hardening material assumption is not only needed to find how
the plastic modulus affects crack propagation. but also gives a more accurate representation
of the behavior of structures which strain-harden during plastic flow [see Youngdahl
(1991)]. The results of this study should give an insight into the fracture process and provide
simple analytical tools that may be used for the prevention of crack growth in stiffened
structures.

2 PROBLEM FORMU LATION

Consider a crack of initial length 2¢, in the stiffener web of a non-symmetric I-beam.
The lower flange of the non-symmetric I-beam may represent an effective plate width
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Fig. 1. Geometry of & non-ssmmetric I-beam with crack in the stiffener web.

associated with the stiffener. Both the upper flange and web of the stiffener are fixed and
considered rigid as shown in Fig. 1. A transverse load on the lower flange (or plate) causes
it to peel away from the stiffener. This type of tearing occurs when there is an initial crack
in the stiffener web. usually in or above the heat-affected zone of the weldment. Denote the
web and lower flange thickness as /1, and /., respectively. The initial crack of length a; is
centered at mid-length. y = 0. A uniform load p, is applied over the entire length of the
lower flange such that. locally, the lower flange of the beam is bent in the region |y| < a.
Here the crack length « will be greater than «, 1f the crack propagates.

2.1 Assumptions
We make the tollowing set of assumptions.

(1) Extensive plastic deformation occurs before and during crack propagation.

(2) Elastic effects are negligible and the material behavior is rigid, linear strain-
hardening.

(3) The transverse shear stress is small and does not influence plastic yielding or crack
propagation. This restricts the initial crack length to be greater than 10 times its thickness.

(4) In the case of crack growth. we shall assume that the process zone is smallt so
that the specific work to fracture or fracture resistance, R, is taken as the elastic fracture
resistance. a4 known material quantity that can be found in the literature or from exper-
ments.

2.2, Transition herween deformation and crack growth

As the material is rigid-plastic. a minimum load is required for plastic deformation to
occur. Above this minimum load is a critical load at which steady-state crack growth will
begin to take place [see Atkins and Liu (1993)]. If the bending moment at the crack tip is
less than the eritical moment to cause steady-state crack propagation, M., but greater than
that to cause plastic flow. M, = o,/ 4. the flange will deflect without crack propagation.
We can therefore distinguish between two modes of deformation: (1) deformation without
crack growth. i.¢e. deflection of the lower flange without crack propagation ; and (2) defor-
mation with crack growth. i.e. deflection of the lower flange coupled with extension of the
crack. The particular type of deformation mode depends on the load amplitude as well as
the geometry and material properties of the beam.

S CLRVATURE AT CRACK TTP FOR QUASI-STATIC CRACK PROPAGATION

The moment (and corresponding curvature) at the crack tip is constant during steady-
state crack propagation [see Atkins and Mai (1985)]. A control volume incorporating the

+The size of the process zone is usually Lirger i plastic fractures when compared with elastic ones because of
localized neckmg at the crack tip. However. Atkins and Mai (1985) found particular cases of fully-plastic crack
growth in which the process zone 1s small. comparable with those in elastic fracture.
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Fig. 2 Inside the control volume at the crack tip.

tear zone with enough material on either side of the crack for steady-state tearing has been
proposed by McClintock (1994) in evaluating the critical moment and curvature of a related
problem, the peeling of welded T-joints. We will use a similar approach to calculate M,
and x, for this problem.

Using the principle of virtual work. one can state the following expression during
steady-state crack propagation in the control volume shown in Fig. 2:

dW = dl+ RdA. (1)

where dW is the increment in external work. dI is plastic work increment, R is the specific
work of fracture in the presence of extensive plastic flow [see Atkins and Mai (1985)] and
dA is the incremental crack area.

The incremental plastic work dI to bend the flange at the crack tip is

Ada P2 A
' adedzds. (2)

0 J() JO

dI' = 25

o

Substituting ¢ = o, + E,¢ and integrating with respect to de gives

Ada fhy 2 b‘ :3\
dl":Zh’ [ <U()f;+ A )d:d.\‘. (3)

0

Y v

i
Using ¢ = zx gives the increment in plastic work

hhik da
== !74/ (60, + E Nx). (4)

<

dr

The increment in work to tear a crack of length du s
dT = Rh, du. (9

If we denote a critical bending moment to tear the crack as M, then the work
increment that is needed to tear and plastically deform the beam is

dW = M_x. da. (6)

[CRATS

where M, is the bending moment corresponding to n.,.
From the principle of virtual work as expressed in eqn (1). one obtains
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hhi

Mok, = 24 (66, + E ik, )+ Rh, . (7)

We can also express M, in terms of 1, because the two are related for a rigid, linear
strain-hardening material

bhia, bl E.Kk,
= . (8)

Equating both expressions for M eqns (7) and (8) gives

Mia, bhiEn. hhik,, .
4 + 1 3 Ky =~ ’-,”477 (6, + bpht'Kcr) + Rh\x : (9)

From eqn (Y). we obtain an expression for w,

4R
R e T (10)

b E,

We can also substitute this expression into egn (8) to evaluate M,

M.

~ bhia, P E, | <24Rhw> (an

4 12 N\ bIE,

Equations (10) and (11) give the entical curvature and bending moment at the bend during
crack growth.

4. TYPE 1 DEFORMATION WITHOUT CRACK GROWTH

The bending moment distribution along a fixed-end beam subject to uniform transverse
load is shown in Fig. 3. Note that the bending moment is maximum at the crack tip and at
the center of the flange. These are thus regions where plastic flow will first occur in a bent
rigid-plastic flange. Even though the clastic bending stresses at the crack tip are twice the
magnitude of those at the center of the tflange. plastic flow must occur simultaneously at
both locations. This is because a deformation mechanism that is plastically deforming at
both crack ups vields hnite slopes ot the rigid portion of the flange and the only way this
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Fig. 3. Distributed bending moments and plastic regions.



Fully-plastic crack propagation 633

~ d

- y yv

dN
I \\‘ N+_‘W dy
— E\i)l/);;g-ll” dy

/ Lot o / dy

N - d | p(y)
M

W

Fig. 4. Free-body diagram of a differential beam element.

mechanism may be admissible is if the curvature is reversed at the center of the beam. Thus,
a plastic region of opposite curvature must occur simultaneously at the center of the beam.

There are three distinct regions of the half flange shown in Fig. 3, A, B, and C. The
flange plastically deforms in regions A and C with associated plastic zone sizes Ay, and Ay,
respectively, and it remains rigid in region B. We denote the distance to the end of region
A y, and the distance to the end of region B y,. With this plastic mechanism for the linear
strain-hardening flange, we can derive expressions for the deflection profile by satisfying

equilibrium, the rigid—plastic constitutive relationships. and boundary or continuity con-
ditions.

4.1. Equilibrium

Recall from classical beam theory that the equilibrium equations corresponding to the
differential element of the flange shown in Fig. 4 is as follows:

dN
SF —=0= — =90 (12)
dy
dmM
v —0= Moy (13)
dy
and
d°M d /Ndw dQ9 d /Ndw
SF = T ) I —p=0, 14
0= +d)'< dy) P=-yg, +dy( dy) P (14)

where N is the membrane force and M is the bending moment in the beam.

4.2. Plastic constitutive relations
For a linear strain-hardening material. the bending moment M is given by

M= M,+E.x. (15)
where E, = E,bh{ {12, and the axial force N is
N=N,+E.z,. (16)

We shall restrict our analysis to infinitesimal deflection. i.e. N = 0.
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Fig. 5. Free-body diagram of regions A, B and C within the plastic flange.

Membrane forces not only stiffen the beam when its deflections are greater than a few
times its thickness [see Haythornwaite (1961)], but they can also influence the fracture mode.
In analyzing the problem of flow with crack propagation we have assumed propagation to
be type I (tensile opening). Membrane forces will cause the crack to propagate in both
mode I and mode 11 (shear mode).

4.3. Boundary and continuity equations
The boundary and continuity conditions for the three regions of the fixed-end flange
shown in Fig. 5 are

Q0) =0 (17)
dw
5 0= (18)
(W], =[] =0 (19)
dw dw
w(a) =0 2D
and
dw
& (a) = 0, (22)

where square brackets denote a jump discontinuity of the value within the brackets. Equa-
tions (19) and (20) therefore show that the slope and deflection are continuous at the
boundaries of regions A, B and C.

4.4. Region A
The bending moment in this region is found by setting N =0 in the equilibrium
equation given by eqn (14) and integrating it with respect to y
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Q= —pyy+a,. (23)

where ¢, 1s a constant. Satisfying the boundary condition in eqn (17) gives @; = 0. Sub-
stituting this result into eqn (13), one obtains

M= (24)

A more elegant solution for the bending moment can be obtained if we express a, in
terms of the distance between the centerline and the end of the central plastic zone or the
half-size of the central plastic zone, y, = Ay,. A relationship between a, and y, is found by
using the condition that M(y,) = — M, or by requiring moment equilibrium of the entire
plastic region y, in the flange (see Fig. 5)

ay=—M,— p—(g;; (25)
Substituting eqn (25) into eqn (24) gives the bending moment in terms of y,
M= IL(‘;:‘;) M, (26)

Note that the curvature of region A. x = d’w/dy". is negative in Fig, 4. The appropriate
constitutive relationship describing the moment-curvature relationship in this region is

M= —-M,+Ex. 27
Substituting eqn (26) into eqn (27) gives an expression for the curvature in this region :

~diw o pa (0 —1d)
En’" S PO St
dy =

(28)

Integrating eqn (28) with respect to 1 and satisfying the boundary condition in eqn
(18) gives

~dw o ope /v j
EPE; =7<3 —};,}/. (29)

e 2N
Epn' :/’_(_) (L_"""V.)_Faah (30)

where a4 1s a constant that may be evaluated from the continuity relations.

4.5. Region B

The flange deforms as a rigid body in region B, i.e. rigid body rotation and translation.
The constant slope of the flange is

_ dw
EVEI—‘ =bh,. 3D
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while the deflection is given by
Ew=by+b,, (32)
where b, and b, are constants.

4.6. Region C
The bending moment in this region is also found by taking moments at a particular
cross-section in region C (see Fig. 5). This gives

M= My+poyo(y—ye) + %(}’—,v’b)3< (33)

The curvature xk = d*w/dy? in A is positive, and the moment-curvature relationship
describing of the flange in this region is

M= M+ Epx. (34)

Substituting eqn (33) into eqn (34). one finds an expression for £,d*w/dy* in terms of y,

_dw Do, - 5
Ep d{; = E (,1 _,‘b)~ (35)

We conveniently expressed the bending moment in terms of the distance between the
centerline and the start of the plastic zone at the crack tip y,. Integrating eqn (35) twice
with respect to y gives

_dw o py [y .
SO AN . 36
E‘p d}‘ o) (3 }h,‘)"l—(l ( )
and
< Py )

where ¢, and ¢, are constants.

4.7. Load-deflection characteristics

The solution for the deflection profile throughout the flange is described by the fol-
lowing unknown quantities: y,, a,, b, b, ¥y, ¢; and ¢,. Four of these can be determined
from the boundary conditions described in eqns (20)~(22). The missing equations are found
via moment equilibrium condition of the rigid portion of the beam, region B in Fig. 5. This
gives

— =gyl (38)

Another equation results from the condition that the slopes at y = y, and at y = y, are the
same. The latter condition gives
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dw dw
—| = =0 39)
[d_v . dy |, (

or
2y} = =2y 4 3avi -, (40)

A simple closed-form expression for y, and y, cannot be obtained from eqns (38) and (40)
because of the cubic relation between y, and y, in eqn (40).

The above set of equations involving the unknown quantities can be solved, and
expressions for the unknown constants of integration are

b] — j‘p()lvd (41)
3
_5[%."&47 Po 3 . X N 4
2= T 34 s —0a” vy w—4a’)y 42
b, 4 + 24[12ayh 6a’ vi + (8v) —4a’)y, + 3a’] (42)
1 4 4
—Pola —Po)a - 517 ) D \ 5

= by = R = D D124y — 6a’ g+ (8y) —4a )y + 3] (43)
Cr o= % Bayi —a') (44)

and
¢y = %“ [a* —247)3). (45)

Equations (30). (32) and (37), with the integration constants listed above, describe the
deflection profile of the flange.

The central deflection of the beam is denoted w, = w(0) and is evaluated from eqn
(30) as

: “po¥a <SP P

¢ sa tog[2ar =6y +(8y) —4a) )y +3a']. (46)

The deflection profile of the beam has been written in terms of y, and y,, where the values
of v, and y,, depend on the load and geometry of the flange.

3. TYPE . DEFORMATION WITH CRACK GROWTH

After reaching a critical moment M., the material tears at the crack tip and unloads
as the crack propagates. The force—deflection characteristics of the flange exhibiting type
II behavior now depend on unloading at the crack tip; because unloading is such an
important aspect of the solution. it will be explained in the following section.
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Fig. 6. Deformation field of plastic flange during crack growth.

S.1. Plastic unloading and loading regions

Figure 6 shows the deflection profile of the flange as the crack propagates in quasi-
steady state. There are two unloading regions: (1) region D in which the crack extends by
Aa; and (2) region C, a plastic region of constant length Ay, Because we have assumed
the material to be rigid—plastic, the unloading path of the material in the Aa region is
represented by a vertical line as shown in Fig. 7. This unloading path signifies that, while
the crack extends, the bending moment in the unloaded region adjacent to the crack tip
decreases from M_,, while the curvature of the flange remains at a constant value equal to
k... We denote the moment at the end of region C as M..

The size of the second plastic region, region C, must remain constant during crack
growth because the material here is also unloading. Only loaded regions can grow. The
constant value of Ay, corresponds to that of Ay, when a transition from type I to type II
has just occured. Each material point in region C unloads with a constant curvature to
some value of the moment that can be found through moment equilibrium in this region
(vertical lines in Fig. 7). The trajectory of the bending moment at each position cor-
responding to the curvatures shown in Fig. 7 will depend on the amount of crack extension
Aa.

Denote the distance to the end of regions A and B at the transition of type I to type 11
behavior as y,, and yy,, respectively. As the crack propagates, material in region A may
continue to be in a loading region even though region C is an unloading region.

M
M b g
unloading
M . in Region D
| unloading
M, : in Region C
1
/ H
M
i
|
Kcr K

Fig. 7. Plastic unloading of regions C and D.
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Fig. 8. Free-body diagram of regions A. B. C and D within the plastic flange during crack growth.

The unloading and loading regions described above give a free-body diagram of the
flange in type Il as showh in Fig. 8. This is similar to that in type I, except for the region
of crack extension Aa and the region of constant length Ay,. Because Ay, unloads to a
reduced bending moment during unloading, the bending moment at the location of the
rigid portion of the beam M " is related to the crack growth Aa:

v g TR At ). (47)
5.2. Boundary conditions

A solution for deflection of the flange in regions A and B is subject to a new set of
displacement and slope boundary conditions that are prescribed at y = y,,. The slope and
deflection at y = 1, consist of two parts due to additional curling of region D as the crack
propagates and the slope and deflection at the point of transition from type I to type IL
The latter components for the slope and deflection are derived from the previous type I
solution. The region defined by length Ay, undergoes rigid body translation and rotation
due to additional curling of Aa.

5.2.1. Curling. We shall denote the deflection and slope at y = a— Aa due to additional
curling by subscript c¢. Using small angle approximations, one finds the following
expressions for w, and (dwdy).:

. (Aa)’
v, s Ral80) (48)
and
d N
(g)thm (49)

5.2.2. Fixed rransitional values. All quantities at the transition from type I to type II
will be denoted by subscript t. We can calculate the slope and deflection at the point of
transition by using the previous type I solution. The deflection w, and slope (dw/dy),,
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however, depend on the values of v,. 1, and p, which are expressed implicitly by eqns (38)
and (40) as well as the value of Ay, calculated from the moment equilibrium of region C
when M. = M,, (see Fig. 5). Requiring equilibrium of moments for this region gives a
relation between M, and Ay,:

PV

M,=M,+~ B (2ay — Ay.), (50)

where Ay, = a,— vy, Here we have denoted a transitional load p, to represent the load at
which a change from type I to type Il occurs. The values of y,, and y,, are found from eqns
(38) and (40)

aM, . .
= (51)
2
and
=2l = =2y 4+ 3ayyi—as. (52)

Equations (50)—(52) give an implicit representation of p,, v, and yy,.
The solution for the transitional deflection w, is obtained from eqn (37):

o =1

= 0 (= 5w+ 120,05, — 6ai v —4adye, + 3aj], (53)

while the transitional slope (dw;dy), is obtained from eqn (36):

- [dn? _p\}”'jl
o e W 4
Ela) =5 (54)

\

Note that the crack length at the transition point is a,. The initial crack length should be
distinguished from the crack length during crack growth, a.

5.3. Load-deflection characteristics

The general equations used to describe the deflection profile £,w and slope E,dw/dy
of the flange in regions A and B are of identical form to those derived in the previous type
I solution, but the values of the integration constant ay4, b, and b, are different because we
require different slope and displacement boundary conditions at y = y,,.

As in the previous case. satisfying slope continuity at y = y,, eqn (20), gives a relation
for b,

h = : (55)

We require displacement continuity at y = 1, eqn (19), to obtain a new expression
for b,

A P .
be= P P S 12000, — 6a30%, —dad e+ 3a8] +

E k. (Aa)?
3 24 '

56
: (56)
The value of a, 1s derived from the condition of displacement continuity at y = y,, eqn
(19), and it is identical to the expression for it in type I [see eqn (44)].

The equation for the central deflection of the flange is obtained from eqn (30) with the
new expressions for a, and b,
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_ . .. . E k. (Aa)”
= + fi‘[~5_l'nf{+ 12a0 1 — 6V, —dag v+ 3ag] + - P"—f—") -

L

(57)

Equation (58) is expressed in terms of v, and Aa. We can find an equation relating these
two values by equating the slope boundary conditions prescribed at y =y, and y = 1,
Thus the expression given in egn (55) is equal to the sum of those specifed by eqns (49)
and (54)

2V Yoo =
Pole _ Pt + E . Aa. (58)

3 3 poer

Another equation relating v, to Aa comes from the moment equilibrium of the rigid
portion of the beam, region B in Fig. &:

M,+M = ’:‘—’ (7= 1) (59)

Substituting the expression for M in eqn (47) into eqn (59) gives

I

5

Mo+M, =" ). (60)

where ¢ = a,+ Aa. By setting A¢ = 0 in the above system of equations, eqns (58), (58) and
(60). one retrieves the same solution for the central deflection at the point of transition
from type I to type II. A bifurcation point is obtained at the transition from type I to type
IT behavior.

6. DISCUSSION OF RESULTS
We introduce the following dimensionless quantities :

m = M/M,. bending moment ;

P = pouij4M,. load amplitude :

Wy, = w,/h;. deflection at centerline :

¥, = 1J/a,. distance of plastic zone at center of flange ;

-

Al

F» = dv/a,. distance to plastic zone at crack tip:
Ad = Adjay, crack growth:

AT, = Ay, a,. plastic zone size at center of flange :
AT. = Ay, a,. plastic zone size at crack tip:

= /K, curvature ;

ao/hg, initial crack length parameter ;

b/hy, stiffener footing parameter ;

W= h,b. tear zone parameter ;

{ = E,j0,. ratio of plastic modulus to flow stress:

and r = 24R/ E,, specific work of fracture parameter.

It

K
4l
/

6.1. Trpe |
Equations (40). (38) and (46) are expressed in terms of the normalized or dimensionless
parameters as follows :
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SO0 = =243 -1 (61)
l
p= (62)
I
and

- ﬁ}": =1 =4 =3 =2 ; =3 =

W= 0 [ =31 ST 1200 — 6T, + 427 — Dy + 3] (63)
20

Substituting the expression for 27 in eqn (61) into eqn (63), one finds

s 3pn° Vs
W :pl [ =37+ 23 —orm +3] = f” [—r+(1=r)°] (64)

Although we are only concerned with how the beam deflection varies with the applied
load. it is worth mentioning some interesting features of the solution obtained by assuming
a rigid. linear strain-hardening beam. First. the sizes of the plastic zones are fully described
by eqns (61) and (62) and depend only on the normalized load p. The plastic zone sizes are
independent of { or the plastic modulus £,. This result may seem counter-intuitive because
one might expect that the degree of strain-hardening would affect the size of the plastic
zones. In this case. it does not. Secondly. it can be shown that the magnitude of the bending
moment at the crack tip is always less than that at the center of the flange. In a rigid,
perfectly-plastic beam. both moments are of equal magnitude but opposite signs. In an
elastic beam. one finds that the bending moment at the crack tip is twice that at the center
of the beam.

6.2. Type 11
The normalized critical curvature and bending moment at the crack tip are

R, = i/ (65)
and
., = 1+ :‘ N2 (66)

respectively.
The following e¢xpressions are the normalized system of equations:

. N WY

pro=porat o2 67
4
(14,

p= R ©%)

2 +Aa)y — 5]

and
1,33 N ):7, 3 5 :R‘cr(Aa ’

W, = L/ (=30 85l + Iq{ | - ST+ 120 67— 47+ 3] % )

where the normalized transitional values are
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Fig. 9. Bifurcation point between deformation without crack growth (type I} and deformation with
crack growth (type ).

e, = 1+2p(1-r7) (70)
) 1
Pi= 0
o — Tt
and
=R = =2 43— L (72)

The beam deflection now depends not only on the same material parameters as in
Section 4, but also on the value of the k., or m,,. These in turn depend on the specific work
to fracture parameter r = 24R/h,E,, and a stiffener footing parameter A = b/h;.

- 6.3. Transition from type 1 to tvpe 11

As an example, the material properties for mild steel given in Table 1 are used to
evaluate the material parameters. The thickness of the web or the width of the tear zone is
taken to be i, = 0.032 m, a typical value that is found in most applications. With this, one
finds that ¢ = E,jo, = 2.8 and r = 24R/h E, = 0.2. In addition, we take the beam dimen-
sions for the flange asnp = 5 and 4 = 2.

Using the above parameters, the dimensionless load—deflection characteristics for both
the deformation without crack growth and the deformation with crack growth modes are
drawn in Fig. 9. A bifurcation point that describes the transition from type I to type II
occurs at point 7 when p = pj,.

The bifurcation load j, does not depend on 5 because egns (70)—(72) are independent
of n. However, p, will be dependent on other parameters such as ¢, r, 4 and u. We will
consider only the effect of geometric parameters on the bifurcation load and the force—

Table 1. Matenal constants tor mild strength steel (ship steel)

Flow stress Plastic modulus Specific work of fracture
a, (MPa) E, (MPa) R (kJm 7

300 840 250
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Fig. 10, Bifurcation load p, versus ratio of tear width to flange width pi= h,:b).

deflection characteristics in type II. In particular, we keep the relative dimensions of the
flange at y = w, A, = 5and /. = b h. = 2 fixed and vary y, the ratio of the width of the tear
and flange. in the range 0 < u < 1. The p parameter also compares the thickness of the
stiffener web (or width of tear region) with the width of the flange (effective plate thickness).

Figure 10 shows that there is roughly a linear increase in the bifurcation load j, as the
relative magnitude of the width of the tear to the flange, u, increases. When u =0, p, = 1,
Le. there is no stiffener (4, = 0) and the flange simple deforms without tearing (type 1
behavior). One can distinguish this from another limiting case when the tear region and
width of the flange are equal. = 1 because the width of the flange is an effective plate
width. we must restrict the analysis to the region 0 < g < 1. A maximum value for the
bifurcation load occurs when p = 1. For the chosen material and geometric parameters,
the bifurcation load may be as much as 50% greater than the limit load.

The variation in the load-deflection characteristics of the flange during crack growth
is shown in Fig. 11 for several p values. The linearly decreasing function which describes
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Fig. 11. Load deflection characteristics as the crack grows for several values of u( = A,,/b).
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load—deflection characteristics of the flange as the crack propagates has a steeper gradient
for smaller values of . This is expected because a smaller value of yp implies an increasing
flange width for a fixed web thickness and the lower flange will be stiffer with a greater
value of the effective width.

7. CONCLUDING REMARKS

A local tearing mechanism that can be used to examine the peeling of a stiffener from
a plate is presented. A rigid, linear strain-hardening beam analysis is used to calculate the
load—deflection characteristics of the transversely-loaded flange (effective width of stiffened
plate). It is shown that the flange deforms in two ways with increasing values of load
amplitude : deformation without crack growth (type I) : and deformation with crack growth
(type II). A deformation profile that incorporates two plastic unloading regions is proposed
for type Il behavior. The region of crack growth deforms with constant curvature, while
the region adjacent to it has a plastic zone size and curvature that are determined from the
type I analysis.

A bifurcation point occurs when the flange response changes from deformation without
crack growth to deformation with crack growth. This bifurcation point is independent of
the initial crack length, but a parametric study shows that the bifurcation load increases
approximately linearly with an increasing ratio of the web thickness to flange width. This
means that the crack is less likely to propagate when larger values for the effective plate
width are assumed. The effective width of the stiffened plate is thus an important parameter
in the detachment of the plate from the stiffeners.
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